JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 1

Scalable Secure Group Communication over IP
Multicast

Suman Banerjee, Bobby Bhattacharjee

Abstract— We introduce and analyze a scalable re-keying
scheme for implementing secure group communications IP
multicast. We show that our scheme incurs constant pro-
cessing, message, and storage overhead for a re-key opera-
tion when a single member joins or leaves the group, and
logarithmic overhead for bulk simultaneous changes to the
group membership. These bounds hold even when group
dynamics are not known a-priori.

Our re-keying algorithm requires a particular clustering
of the members of the secure multicast group. We describe
a protocol to achieve such clustering and show that it is
feasible to efficiently cluster members over realistic Internet-
like topologies. We evaluate the overhead of our own re-
keying scheme and also of previously published schemes via
simulation over an Internet topology map containing over
280,000 routers. Through analysis and detailed simulations,
we show that this re-keying scheme performs better than
previous schemes for a single change to group membership.
Further, for bulk group changes, our algorithm outperforms
all previously known schemes by several orders of magnitude
in terms of actual bandwidth usage, processing costs and
storage requirements.

Keywords— Group Communication, Hierarchy, Multicast,
Security

I. INTRODUCTION

P multicast enables scalable wide-area multi-party ap-

plications over the Internet. In this paper, we describe
a new algorithm for scalable, secure group communication
over IP multicast. Our algorithm can be implemented over
base IP multicast and does not require router support be-
yond best-effort forwarding. Since our scheme is completely
end-host based, it can be used to implement group security
over IP multicast-enabled untrusted, insecure networks.

A. Group Keys and Re-keying Groups

Many secure group communication systems [12], [2], [25],
191, [11, [7], [4], [15], [16], including ours, rely on the notion
of a “group key” — a secret known only to the members
of the secure communication group'. Once a group key is
distributed to all current members of the multicast group,
secure messages can be sent encrypted with the group key.
The overall security of the group depends wholly on the se-
crecy and the strength of the group key. Since every group
member has the group key, sending a message involves only
a single encryption at the sender and a single decryption at
each receiver. The routers on the way treat each message
no different than any other IP multicast datagram. The

The authors are with the Department of Computer Science,
University of Maryland, College Park, MD 20742, USA. Emails:
{suman,bobby }@cs.umd.edu

1Tt is possible to construct secure group communication systems
without using a secret shared between all members. In such systems,
trusted intermediaries, e.g. secure routers, must encrypt and decrypt
messages en-route.

only problem left to solve is to scalably and securely estab-
lish a group key known to all (and only) the members of
the secure multicast group.

Since we assume the network infrastructure is insecure,
it is possible for non-members to eavesdrop on the multi-
cast group and store encrypted messages (that they can-
not decrypt). Tt is also possible for members who have
left the group to continue to decrypt messages and for new
members to decrypt messages they had stored previously.
Therefore, during each membership change, a new group
key must be distributed and all subsequent communication
must, use this new key. This is the process of group re-
keying: establishing a new group key upon a membership
change in the secure multicast group. Note that depending
on the requirements of the application, it may or may not
be necessary to re-key the group when a new member joins;
but 1t is almost always necessary to re-key the group when
a member leaves.

Clearly, the overhead of the re-keying can be reduced (at
the cost of reduced security) by batching the re-key oper-
ations, e.g. not re-keying every time there is a member-
ship change but re-keying periodically or when a the group
membership has changed sufficiently. Batching is impor-
tant since re-keying operations affect every single member
in the group, and can potentially be very expensive for
large groups. Thus, re-keying schemes designed for large
groups must be efficient when handling bulk simultaneous
changes to the group membership.

The simplest solution for re-keying involves a pair-wise
secure exchange of the group key between a central key
server and each group member [12]. Unfortunately, this
scheme incurs a O(N) overhead, where N is the num-
ber of group members, and is not viable for large groups.
A particularly elegant protocol using “logical key hierar-
chies” were independently presented in [25], [9]. This is
the first protocol that describes a scheme that incurs sub-
linear overhead for single membership changes to the group.
In [7], a different scheme using boolean minimization tech-
niques 1s described that is efficient for bulk membership
changes. This technique, however, is susceptible to a collu-
sion problem, where departed group members can collude
to obtain future group keys. Both these schemes reduce
the overhead for the group re-keying operation for single
membership change to O(log N). If more information is
known about group dynamics, then it is possible to do bet-
ter. MARKS [4] is a scheme that assumes that the duration
over which a member stays attached to the group is known
at the time the member joins. Using this information a
constant overhead solution is presented in [4]. In this pa-
per, we present a constant processing, message, and stor-

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 2

age overhead solution for the general problem when the
membership durations are not known; to the best of our
knowledge, ours is the first scheme with a provable con-
stant bound. Further, we show that our scheme can han-
dle O(N) simultaneous changes to the group membership
in O(log N) processing, and bandwidth complexity; this is
a significant improvement on the previously known O(N)
bounds [7]. Obviously, the reduction of re-keying costs for
single membership change from O(log N) to O(1) is not sig-
nificant unless the size of the group is very large. In simula-
tions, our re-keying scheme performs better than previous
schemes for single group changes. However, for bulk group
changes, our algorithm outperforms all previously known
schemes by orders of magnitude in terms of bandwidth us-
age, processing costs and storage requirements.

B. Overview of Our Approach

Our scheme is based on a particular size-bounded, non-
overlapping, clustering of multicast group members, which
we call “spatial clustering”. Spatial clustering assures that
members in the same cluster are near each other in the
multicast tree. The constant overhead re-keying scheme is
implemented using a hierarchy of spatial clusters. Our re-
keying scheme has low communication overhead precisely
because it is based upon a spatial partitioning of the mul-
ticast group which allows the key distribution scheme to
exploit the parallelism inherent in different parts of a mul-
ticast tree.

This paper has two main contributions:

o We describe an efficient re-keying algorithm for imple-
menting group security over IP multicast. Our analysis
shows that this scheme has constant overhead for a single
group re-key even when the group dynamics are not known
a-priori. Further, we show that the overhead for bulk si-
multaneous changes is logarithmic in the number of group
members. Both these results improve on previously known
bounds.

o We present detailed simulation of our own scheme, and
also of previously published schemes including [25], [7].
Compared to previously published work, our simulation re-
sults better measure the per router packet and bandwidth
overheads inherent in implementing secure group commu-
nication schemes over IP multicast.

We also describe an algorithm based on IP multicast for
creating bounded-size non-overlapping clusters. Such clus-
tering is potentially useful beyond secure multicast; how-
ever, due to space restrictions, we do not explore this topic
further in this paper.

C. Roadmap

In the next section, we describe existing approaches for
key distribution for secure multicast. In Section III, we
describe our multicast key distribution scheme. In Sec-
tion IV, we describe the underlying clustering algorithm
required to implement our re-keying scheme. In Section V,
we describe the experimental methodology for our simu-
lation experiments. In Section VI, we present simulation
results comparing our scheme versus existing approaches

and conclude in Section VII. We present a formal protocol
specification and asymptotic complexity analysis for the
re-keying algorithm in an Appendix.

II. EXISTING APPROACHES FOR SECURE MULTICAST

Group Key Management Protocol (GKMP) [12] is a sim-
ple group management protocol in which a Group Key
Controller is responsible for generating group keys. In
GKMP, static keys —pairwise shared between the Group
Key Controller and each group member— are used to es-
tablish a group key. The Scalable Multicast Key Distribu-
tion (SMKD) [2] works in conjunction with the Core Based
Tree (CBT) [3] multicast protocol to securely distribute
the multicast group key. The CBT root router initially
operates as the entity responsible for generation and dis-
tribution of the group key. This responsibility is delegated
to other routers as they join the delivery tree. SMKD re-
quires explicit router support, and does not scalably solve
the problem of group re-keying.

In Tolus [15], the scalability of re-keying is handled by di-
viding the secure multicast group into multiple sub-groups.
Security in each sub-group is managed by a Group Secu-
rity Agent (GSA). The GSAs (and by consequence, the
sub-groups) are statically configured and located in differ-
ent parts of the Internet. Each sub-group has its own sub-
group key that is managed by the relevant GSA. Member-
ship changes in any sub-group require local re-keying of the
sub-group key. If a global shared group key 1s used for the
data, this key needs to be distributed to members in each
sub-group by sub-group specific means. Alternatively, if
no global group key is used, changes in one sub-group do
not affect the others, but expensive data-path encryptions
and decryptions are necessary. Since lolus does not define
sizes of subgroups etc., it is difficult to provide analytic
bounds on Tolus’ performance (and hence it is not included
in the simulation results). Tt is, however, possible to use an
Tolus-like infrastructure to implement our scheme, and we
discuss the details of such an implementation and compare
our scheme with ITolus in Section IV-C.

As mentioned in Section I, the MARKS [4] scheme de-
fines a constant overhead key distribution protocol. More
precisely, members in MARKS incur a one time cost which
depends on the length of the time they stay in the group.

MARKS is based upon the premise that many applica-
tions, e.g. pre-paid or subscription pay-TV or pay-per-
view, do not (or rarely) require premature eviction. Thus,
the protocol assumes that the duration over which a mem-
ber stays in the group is known when the member joins.
For single changes to the group, our scheme provides better
performance bounds without the known a-prior: member-
ship duration requirement.

Two protocols that provably incurred sub-linear group
re-keying overheads for each membership change are the
Logical Key Hierarchies (LKH) scheme [9], [25] and the
Boolean Minimization scheme [7]. Both these protocols
and our protocol address the re-keying problem under the
same assumptions (unlike MARKS), and we outline their
operation in the next section. The Boolean Minimization

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 3

k[0-7] changes to k[0-3,5-7]

k[0-3] k[4-7] changes to k[5-7]

:

scheme, although efficient, suffers from a collusion prob-
lem as discussed later in this section. In our simulations,
we compare the performance of our proposed scheme to
both these schemes. There are two extensions to the LKH
scheme: the scheme in [6] (called LKH+) uses input dou-
bling functions to reduce number of re-keying messages in
half, and the scheme in [14] describe how to effectively re-
key during bulk membership changes. In our simulations,
we have also implemented the protocols described in [14].

The LKH scheme defines a logical hierarchy of keys dis-
tributed between different sets of members, as shown in
Figure 1. The leaf nodes on the tree represent the different
members, while the circular nodes represent the different
keys. Each member u; possesses all the keys on its path
to the root (from k; — k[0 — 7] in Figure 1). The root
key serves as the group key. A central key server is respon-
sible for generating and distributing new keys as required.
When a member (e.g. u4 in the figure) leaves the group, all
keys on the path from this member to the root needs to be
changed. However, the updated keys can be multicast by
the key server to the sub-groups instead of being unicast
to individual members separately, and thus the re-keying
cost is O(log N).

A distributed version of the LKH scheme was also
proposed in [9], where trusted sub-root nodes handle
group join and group re-key operations for subordinate
users. In [25] different re-keying —key-, user-, and group-
oriented— techniques for the LKH scheme are described,
each with different processing, and message overheads. We
have implemented all of these schemes in our simulation,
and in our comparisons, we use the re-keying scheme that
is most favorable to the LKH scheme for the particular
experiment.

k[01] k[23] K[45]

1331i 1t
u4

Fig. 1. LKH Scheme

The boolean minimization technique [7] is another
scheme that uses virtual key hierarchy-based scheme.
There are 2log N auxiliary keys, namely {ko, k1, ...} and
{ko, k1,...} and one group key SK. Note that the keys k,
and k, are not bitwise complements of each other, instead
they represent two completely different keys. If br ... b1, bg
denotes the identifier of a member in binary notation, then
that member has key SK and the auxiliary keys given by
the following rule: For each i, if ; = 0, then the member

has key k;, else it has key k;. This set of auxiliary keys
held by each member can be represented using a binary

oo [o1]] [ua] s

000 001 010 011 100 101 110 111

Fig. 2. Boolean Minimization Scheme

key tree as shown in Figure 2. When a member leaves
the group, all group key along with the auxiliary keys held
by the member need to be changed. A new group key is
generated by a group controller and is encrypted with the
keys that are complementary to the keys held by the de-
parting member. In the example in Figure 2, member uy
leaves: the new group key SK' are therefore encrypted as
{SK' iz {SK'}k,, {SK'}, and distributed to the entire
group. All and only the remaining members are able to de-
crypt the new group key. Further, a one-way hash function
on the new group key is used to update the auxiliary keys
known to us. Using boolean minimization techniques to
determine how the group key is encrypted for distribution,
this scheme is able to handle bulk membership changes
more scalably than the LKH scheme.

However, the Boolean Minimization scheme is of limited
interest because it suffers from a collusion problem. For
example, in Figure 2, members uy and u; together have
all the different keys in the hierarchy. Therefore, if they
collude together after simultaneously departing from the
group, they can decrypt any new group key that is dis-
tributed by the key server.

Balenson et. al. [1] define another efficient group key
distribution mechanism based on a novel application of one-
way function trees (OFT). This technique has overheads
that are similar to the LKH scheme.

The VersaKey framework [24] introduces group re-keying
schemes similar to the OFT approach and therefore, also
has similar overheads. The key generation mechanism in
this framework can be varied between completely central-
ized (where keys are generated by a single key server) and
fully distributed (where keys are generated by any group
member).

Naor et. al. [16] defines an efficient “subset-difference”-
based group re-keying algorithm for bulk removals from
the group. This scheme requires group members to store
log? N keys and the group controller incurs a communi-
cation overhead of 2r, where r is the number of members
simultaneously leaving the group.

The Multicast Security (MSEC) Working Group in the
IETF is currently pursuing an effort to standardize pro-
tocols for securing group network communication for large
groups, with additional emphasis on groups that use net-
work layer multicast for group data communication. The

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 4

working group charter classifies the work into three func-
tional building blocks namely, the data security transforms
functional building block, the group key management and
group security association (GSA) building block and the
group policy management functional building block. Our
work proposes a scalable mechanism for one of these build-
ing blocks, namely the group key management and group
security association (GSA) functional building block. This
building block requires secure generation distribution, and
update of the group cryptographic keys.

IT1I. SECURE MULTICAST USING CLUSTERING

In this section, we present our secure key distribution
algorithm. For this description, we assume a member clus-
tering protocol that maps multicast group members to clus-
ters with the following properties:

Fach cluster has between k and 2k — 1 members, for some
fixed k. No two clusters share a member. Cluster members
are close to each other on the multicast delivery path.

We describe an actual clustering protocol in Section TV.
This protocol guarantees that no two clusters share more
than one member. This weaker condition, however, is still
sufficient to guarantee the clustering properties as required
in our analysis of the re-keying algorithm.

A. Member Hierarchy for Key Distribution

Our key distribution scheme creates a member hierarchy
as shown in the leftmost panel of Figure 3. A “layer” com-
prises of a set of members of the secure multicast group in
the same level of the hierarchy. Layers are numbered se-
quentially with the lowest layer of the hierarchy being layer
zero (denote by Lg). An instance of the clustering protocol
is executed at each layer of the hierarchy to create a set
of clusters, and all members of the secure multicast group
are part of the lowest layer (Lg). The cluster leaders of
all the clusters in layer L; join layer L;y1. For example,
consider the arrangement of members in the initial config-
uration (Panel 0) of Figure 3. All ten members A-J are
part of layer Ly. The clustering protocol has partitioned
Lo into three clusters: [ABC], [DEFJ], and [GHI]. (In re-
ferring to clusters in Figures 3 and 4 |, we use the notation
[XY...Z] to refer to a cluster with members X, Y, ..., 7))
The cluster leaders, C', E and H join layer L;. Another
instance of the clustering protocol executes at layer L, to
create the single cluster [CEH]. The leader, H, of the layer
Ly cluster joins layer Ly — the highest layer in this exam-
ple. The procedure terminates when there is only a single
member in any layer.

When a new member joins any layer, the clustering pro-
tocol places it into one of the clusters in that layer. Oc-
casionally, arrival of a new member or the departure of an
existing member from a layer can split or merge clusters.
This decision is part of the clustering protocol.

B. Layer Keys, Cluster Keys, Key Servers and Group
Communication

A secret layer key is associated with each layer of the
hierarchy. A group member possesses a layer key for a

specific layer if and only if it is a member of a cluster in
that layer. Layer keys are generated, on-demand, by a
key server whenever a new member joins or an existing
member leaves any layer. A secret cluster key is associated
with each cluster. Once again, a group member possesses a
cluster key for a specific cluster if and only if it is a member
of that cluster. The leader of each cluster is responsible
for generating the cluster key for that cluster. Finally, in
all clusters, a pair-wise key is shared between the cluster-
leader and each cluster member. Since all members belong
to Lg, the key for Lo 1s used as a shared key for secure
communication.

C. Key Distribution Protocol

The key distribution protocol ensures that:

the layer key of each layer is only available to members
Jjoined to that layer.

Therefore, whenever a member leaves (or joins) a layer, a
new layer key is required for that layer. This ensures that
the layer key of layer Ly (which is the group key for the
entire secure multicast group) is available only to members
of Ly, 1.e. all and only the current members of the multicast
group. In the rest of this section, we use three examples
to illustrate how our protocol efficiently changes layer keys
and maintains security guarantees. In the examples, we
assume that the cluster sizes must be bounded between 3
and 5. A formal specification for the protocol is given in
the Appendix.

Example I: Member departure. In Figure 3, we first
consider the case that member D leaves the secure multi-
cast group. Since D belongs only to Lg, only the Ly layer
key needs to be changed. The following are the re-keying
operations required :

1. A new Ly layer key request is made by E, the cluster
leader of [DEFJ)?.Simultaneously, E sets up a new cluster
key by pair-wise communication with each of the remaining
members of this cluster (in this case F' and J), as shown
in Panel 1.

2. The key server generates the new Ly layer key, and mul-
ticasts the new Lg layer key to all members in the immedi-
ate higher layer, i.e. Ly, encrypted by the current L, layer
key (Panel 1). (Recall that the members of layer L; are
the cluster leaders of the clusters in layer Lg.)

3. On receiving the new Lg layer key, the members of layer
L1 (i.e. C, E and H) extract the new layer Ly key, and
multicast it to the other members of their clusters in layer
Lg, encrypted by the respective current cluster keys. Note
that when member E transmits the new Ly layer key in
its Lo cluster (now comprising of E, F' and J), it uses the
new cluster key that it had set up thus ensuring D cannot
decrypt the new layer key. The cluster multicasts occur in
parallel and affect disjoint sets of the multicast group.

Member Join. A joining member is assigned to a Lg
cluster by the clustering protocol at layer Lg. The clus-
ter leader in this cluster generates and distributes a new

2If E leaves the group at the same time as D, then E’s departure
would cause H, the cluster leader of cluster [CEH] in layer L1, to
initiate new layer key requests for both layers Lo and L.

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION

Key Server Only a single member Key Server
Lzﬁ in this layer, cluster-leader /H®
. oflayer L1 \[[LO key] |
[S h— o=~ Cluster-leaders of layer B
T =S dl
e £ = L0 form layer L1
LO B D gE GH All members are

Initial Arrangement of Members into Layers

-2 joined to layer LO

Member D leaves
E unicasts new cluster key J and F

Key server multicasts new LO key to L1 members

Key Server

Cluster leaders in LO multicast new
LO key into respective clusters

Fig. 3. Key distribution on a three layer hierarchy of members on the multicast delivery tree.

Key Server

SA®T e (= =S
Member E leaves from initial configuration
It was part of layers LO and L1
D replaces E as cluster-leader in the LO cluster (DJF)
D unicasts new cluster key in DJF cluster
D joins layer L1, and the cluster CDH
H unicasts new cluster key in CDH cluster

Key Server

Member F leaves from the configuration in 3.
Two clusters merge in layer LO
D drops out of L1.

Key Server [L1 key] "
'

Key server multicast the new L1 key to L2 members
L2 members (cluster-leaders of L1) multicasts
this new L1 key into respective L1 clusters

Key Server [L1 key] oH
|

————————————— Aokl i

As before, the new L1 key is generated, since
the membership of L1 has changed (D is no longer
member of L1, asitis not a cluster—leader in LO)

Key Server

New LO key is multicast by key server to L1
members as before. It is encrypted using the
new L1 key.

They are distributed as before into LO clusters.

Key Server

I\ [LO key]
Y

Finally, new LO key is generated and
distributed as before.

New cluster keys are generated for LO cluster ABCDJ
and the L1 cluster CH, by cluster leaders C and H.

Fig. 4. Examples illustrating the key distribution scheme.

cluster key. Finally, the new Lg layer key is distributed, as
explained steps 2 and 3 in the previous example.

Example II: Cluster Leader Departure. In our next
example, we refer to Figure 4, and consider the case when
E, a cluster leader in layer Ly and a member of both Lg
and Lj, leaves the original multicast group. The re-keying
operations proceeds as follows :

1. Some member, D, in this example, is chosen as the new
cluster leader of the Lo cluster ([DF.J]). Being a leader in
Lo, D joins layer Li. The two affected clusters [DFJ] in
layer Lo and [CDH] in layer L require new cluster keys.
As shown in Panel 3, these keys are established by the
cluster leaders by pair-wise unicast communication, using
the respective pair-wise keys.

2. New layer keys, for both layers Ly and L1, are requested
by the cluster leader (H) of the highest affected cluster
([CDH]). The new L; key is unicast to other members of
the Ly cluster, [CDH], by its leader, H. The new Lg key
is multicast to layer L; encrypted using the new L, key.
It is then multicast, using corresponding cluster keys, onto
clusters [ABC], [GHI], and [DJF] by C, H, and D, respec-
tively

It should be clear that whenever there is a change in mem-
bership in any specific layer L; for j > 0, there is a corre-

sponding change in all lower layers L;, 0 <7 < j. Thus, in
this example, H, which is the leader of the affected cluster
in the highest layer, immediately requests a new layer key
for Ly and all lower layers.

Example III: Cluster Reconfiguration. As a final ex-
ample, we consider the case, when member F' leaves the
group from the configuration in Figure 4, Panel 3 (mem-
ber E has already left). In this case, the DF'J cluster in
layer Lg shrinks to two members (D and .J), violating size
lower bound of 3. As a consequence, the clustering protocol
merges the clusters DJ and ABC to create a cluster within
the required size bound. Since, D is no longer a leader of a
Lg cluster, it must be removed from layer L;. Both layers
Lo and Ly are rekeyed as in the previous example.

D. Authentication and Access Control

Every secure communication group typically requires a
single entity where access to the group is controlled. We
call this entity the Authentication and Access Control
Server (ACS). For any key distribution scheme, the ACS
needs to maintain some state for each current member of
the secure group.

When a new member, A, joins the secure group, it regis-
ters and authenticates itself with the ACS. A new member

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 6

needs to be authenticated by the ACS only the first time it
joins the group. The ACS maintains the authenticated list
for all the members of the group. As part of this registra-
tion A acquires a time-stamped credential Cred, from the
ACS, which is a digital certificate signed by the ACS. Sub-
sequently, when A joins a specific cluster in any layer, with
leader B. The members A and B exchange the credentials
to mutually authenticate each other and establish the pair-
wise key between the leader and the member. The mem-
bers establish the pair-wise key using a computationally
less expensive variant of the Diffie-Hellman key exchange
protocol by leveraging the authentication provided by the
ACS.

This authentication and key establishment scheme is de-
scribed in [19] and we outline this protocol next. We as-
sume that a prime number, p, a generator, g and the public
key of the ACS are publicly known across the system. We
use modulo p arithmetic in this section. For simplicity of
notation we use g® to represent ¢*(mod p). The following
is the authentication protocol pair-wise key establishment
between the new member, A and a cluster leader, B:

1. A generates a random number « and sends g* to the
ACS.

2. The ACS authenticates A and returns a signed creden-
tial to A. This credential, Cred 4, is the pair (A, g%) signed
by the ACS. B is a part of the secure group and there-
fore, already has its own credential Cred g which is the pair
(B, g?) signed by the ACS, where § is a random number
chosen by B during its authentication with the ACS.

3. A sends (A, g% Credy) to B. Since the credential is
signed by the ACS, B can authenticate this message to
have been originated at A.

4. B sends a similar tuple (B, g?, Credg) to A. Therefore,
A can also authenticate B.

5. A creates a pair-wise key K = (g7)°.

6. Similarly, B creates the same pair-wise key K = (g%)*.
An eavesdropper cannot construct the key, K, by moni-
toring the network traffic and acquiring the transmitted
values, g% and ¢g° without knowing the values of a and
3. Note that, @ and @ are never transmitted by A and B
respectively.

In our protocol, we do not use K as the pair-wise key be-
tween A and B. Having computed K, the members A and
B can compute a pair-wise key x;(A, B) as K7, where v;
is obtained from some generator function T'(¢) = +;. Thus,
choosing different values of i it is possible to obtain differ-
ent pair-wise keys for a given K. Since the key, K is not
used to encrypt any network traffic, it has a lower probabil-
ity of compromise through traffic analysis. Therefore the
same K can be used to generate multiple pair-wise keys if
needed. The first pair-wise key can be computed using a
single modular exponentiation by A (and analogously by
B) as: xo(A, B) = (g°)*.

Lastly, note that the pair-wise session keys y;(A, B) are
used for symmetric cryptographic operations. Therefore, it
is acceptable to use a short key length for K and x;(4, B)
(e.g. 64 bits).

The cost of authentication of a new member and genera-

tion of the pair-wise key between a member and its leader
involves a digital signature verification and a modular ex-
ponentiation. The cost of the exponentiation increases lin-
early with the length of the key, and therefore, using a
key with a short length helps in significantly reducing its
computational costs. Note, that a set of values for ¢ and
g? are pre-computed off-line and stored at the members
before they join the secure group. Therefore, the on-line
computational overhead is half of the full Diffie-Hellman
protocol.

Asymmetric Key Operations. The mutual authentica-
tion and establishment of a pair-wise key between a cluster
leader and other members is computationally more expen-
sive than the encryption and decryption operations for clus-
ter and layer re-key. This is because the former involves
asymmetric key operations, while the latter can be per-
formed using symmetric keys. However, we show that the
average overheads at a member for asymmetric key opera-
tions 1s negligible.

Consider the case when cluster sizes vary between 8 and
15 (as used in the simulations later). In this case 92% of
the entire group belongs solely to layer Ly. When one of
these members leave the group, no authentication or pair-
wise key establishment is required so long as the resulting
size of the affected cluster stays 8 or higher. Assuming
equi-probable leaves for members, more than 80% of the
leave operations, therefore, require no asymmetric key op-
erations. In the worst case a member leaves from the high-
est layer and only O(klog N) members need to perform
asymmetric key operations. Similarly for more than 80%
of the member join operations, only two members (the new
joining member, and its layer Ly cluster leader) require to
perform asymmetric key operations.

Our analysis shows that the amortized number of asym-
metric key operations per member for joins and leaves, ag-
gregated over all layers, is << 1.

The ACS can also arbitrate the removal of a member
from the group. In such a situation, the ACS instructs the
Key Server to issue a new layer Lg key (i.e. the group key)
for the group. All subsequent data messages are encrypted
with the new group key. The ACS also multicasts the iden-
tifier of the revoked group member that caused this group
key change. Any member that first realizes that it does
not have the new group key invokes the distributed re-key
operation as described in detail in the appendix.

E. Complexity Analysis

Along with the formal protocol specification, we have
presented the complexity proofs for our algorithm in the
Appendix. We show that in our scheme the processing and
communication costs at a member for a single member-
ship change to the group and the number of keys stored
at each member is of constant order. Also the number
of asymmetric key cryptographic operations per member
is significantly small (i.e. << 1). Only the communica-
tion overheads incurred at the different routers (links) on
the multicast tree depend on the physical topology. We
define the physical cluster topology as the set of all and

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION

Scheme Storage Processing (single change) Processing (O(N) change) Communication
Member Key Server Member Key Server Member Key Server Single change O(N) change
GRMP 2 N1 1 N o) o) o) o)
Key Graphs log, N +1 Nd/f(d—-1) <2 d(logy, N — 1) O(log N) O(N) O(dlog N) O(N)
Bool. Min. log, N+1 2log, N+41 1 log, N 0(1) O(N) O(log N) O(N)
Spatial Clustering <4 log, N <2 <2 O(1) O(log N) Oo(1) O(log N)
TABLE 1

AVERAGE COSTS FOR DIFFERENT SECURE MULTICAST KEY DISTRIBUTION SCHEMES. FOR O(]\Z)7 I.E. BULK, CHANGES TO THE GROUP
MEMBERSHIP THE OVERHEAD COSTS ARE TYPICALLY MAXIMIZED WHEN N/2 MEMBERS SIMULTANEOUSLY LEAVE THE GROUP.

only those routers (links) that need to carry traffic due to
intra-cluster communication. We consider two clusters to
be non-overlapping if their physical cluster topologies do
not share any common router. For the analysis of commu-
nication costs at routers (links), we consider the case when
the clusters of a layer are non-overlapping. In this case,
we show that the communication cost per router (link)
on the multicast delivery tree is also constant for a sin-
gle membership change 3. However, depending on the un-
derlying physical router (link) topology, it is not always
possible to guarantee this non-overlapping property. How-
ever, through simulations on the large Internet map, we
demonstrate that it is possible to achieve significantly low-
overlap between clusters on realistic network topologies. In
Section VI we provide simulation results to illustrate that
even the communication costs at routers (links) for real-
istic topologies are largely constant for single membership
changes.

Next we analyze the overheads for bulk changes to the
group. When we batch process multiple changes (or equiv-
alently, there are multiple simultaneous changes in the
group), the processing cost at the key server and the mes-
saging overheads have logarithmic bounds, which is a sig-
nificant improvement over previously known bounds. It 1s
important to note that our results do not violate the worst
case logarithmic lower bounds for single change in group
membership presented in [21]. While the worst case cost of
our scheme is logarithmic, we improve the best and amor-
tized re-keying costs from logarithmic in currently known
schemes to constant in our scheme. We summarize our
results and previously known results in Table 1.

IV. SpAaTIAL CLUSTERING

In this section, we outline an algorithm to partition the
members of a multicast group into fixed sizeclusters, as re-
quired by the re-keying algorithm. The input to the clus-
tering algorithm is a member overlay tree which contains
only the multicast group members as nodes. As members
join the multicast group, we use a member discovery pro-
tocol to establish a parent for each new member in the
member overlay tree. We describe the member discovery
protocol next and the clustering protocol in Section IV-B.

3Note, that the processing, storage and communication require-
ments at members do not depend on the physical multicast path
topology, and all the stated results hold without any topology-related
assumptions.

A. Member Discovery Protocol

The member discovery protocol takes a multicast topol-
ogy as input, and outputs a member overlay tree. It thus
defines parent-child relationships among the different mem-
bers of the multicast tree. This 1s the only component that
is inherently tied to the network layer multicast scheme be-
ing used. Network layer multicast schemes create data de-
livery trees, which are broadly classified to be either source-
based (DVMRP [23]) or shared (CBT [3]) trees, each of
which can be unidirectional (PIM-SM [10]) or bi-directional
(CBT). We have defined different member discovery proto-
cols tailored for each of these different network layer mul-
ticast schemes. In this paper, we focus on a network layer
multicast scheme that creates shared bi-directional trees
(e.g. Core Based Tree protocol [3]) and only describe the
appropriate member discovery protocol. This member dis-
covery protocol uses mechanisms similar to the low over-
head technique of fault isolation in multicast trees [17]. Let
d(u,v) denote the distance, in router hops, between the
members z and y along the multicast delivery with source
S. A member y is considered to be a parent of member z,
if and only if the following three conditions hold:

C1: d(S,y) < d(S,z). This condition ensures that the
parent is closer to the source than the child.

C2: VY z that satisfy C1, d(y, z) < d(z,z). This condition
chooses the closest member that satisfies condition C1.
C3: YV w that satisfy C2, y < w (lexicographically). For
a set of members that are equidistant from the source and
each other, multiple members may satisfy condition C2. In
such cases, we pick the lexicographically smallest member
as a simple symmetry breaking technique to prevent loops.

The protocol uses two periodic messages: the root S peri-
odically multicasts a heartbeat packet to all the members of
the group, from which each member infers their distance to
S. Periodically each member, z, multicasts a TTL-scoped
heartbeat message to parent and all of its children on the
overlay tree. This message carries the tuple (d(S, z), P(z)),
where P(z) denotes z’s parent in the overlay tree.

We explain the tree construction using an example: Con-
sider the network in Figure 5. In Panel 0, E sends out a
message with TTL five to reach its parent B. Assume a
new member Cjoins the multicast group (as shown in Panel
1). Since C'is part of the multicast group, the TTL-scoped
message from B reaches C. Node C'is able to infer the mul-
ticast distance between B and C and hence, using the two
specified rules, concludes that B is its parent. If, however,
the original messages from B does not reach C| then after
a timeout, C initiates an Expanding Ring Search to locate

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 8

— Parent-child relation S
on the overlay tree

— TTL-scoped message

0. Members periodically multicast TTL-scoped
heart—beat messages to parent and children

1. Member C joins and finds B as parent
on receiving a periodic message of B

2. Member E finds C as new parent
on receiving a periodic message of C

Fig. 5. Member discovery protocol example

a parent. Upon receiving a query from C, B updates its
TTL-scope value such that its next heartbeat reaches C.

Finally, when C sends its periodic heartbeat scoped to
reach B (Panel 2), it also reaches E. From condition C1,
E realizes that C is its new parent on the overlay tree and
adjust its TTL-scoping accordingly. B stops getting heart-
beats from E and concludes that E is no longer its child.
Note that even if the TTL-scoped message from C did not
reach E| the heartbeat message from E, scoped to reach its
current parent B, is guaranteed to reach C. C would real-
ize that it is a better candidate to be E’s parent and would
adjust the TTL-scope of its heartbeat to reach E.

B. Clustering Protocol

The clustering protocol takes an integer £ and a member
overlay tree as input, and outputs clusters which are con-
nected subsets of the tree, each between size k and 2k — 1.
To create the clusters, the tree is logically traversed from
the leaves, upwards to the root. In this traversal, when-
ever a set of members that fall within the size bounds is
detected, they are grouped into a cluster. These mem-
bers are considered pruned from the overlay tree for the
remaining traversal. When this procedure terminates, it
is possible that a single cluster, located at the root of the
overlay tree, may have size less than k. Additionally, this
protocol also guarantees that two clusters share no more
than one member.

B.1 Protocol Description

We refer to clusters of size between k and 2k —1 as stable
clusters. Clusters of size less than k or greater than or equal
2k may occur in transience: we call these unstable clusters.
In figure 6, A and B are stable clusters rooted at ».

Let 7, denote the subtree, rooted at some node v which
cannot be joined to any cluster rooted at v (doing so would
render these clusters unstable). This subtree, which we call
the unstable subtree, has to be joined to a cluster that 1s
rooted at a node upstream of node v. In Figure 6, 7, = C.
When the protocol stabilizes, C would be part of a cluster
rooted at a node upstream of v or be part of the single
unstable cluster rooted at the root of the overlay tree.

Protocol Operation. The clustering protocol proceeds as
follows:

¢ Initially when a member u joins the multicast group, it
creates an unstable cluster, comprising only of itself. This
cluster is also an unstable subtree, i.e. 7, = {u}.

¢ Each member u periodically sends a message to its parent
containing the value |7,].

¢ The periodic message from child v to parent u is either
a notification of a new unstable subtree rooted at v or of
an existing unstable subtree rooted at v.

If 7, 1s an previously known subtree, then it part of some
existing cluster (or the unstable subtree) rooted at u. In
this case, u checks to see if the size of 7, has changed. If the
size has changed sufficiently, v may have to split or merge
a cluster that 7, is part of. If 7, is part of the unstable
subtree, u may now be able to create a new stable cluster.
If the message is for previously unknown subtree, this new
subtree 1s added to the unstable subtree rooted at u. Node
u tries to merge the its new upstream cluster with its ex-
isting clusters. This procedure may cause a new stable
cluster, rooted at u to be formed. All subtrees that can-
not be put into any cluster form the new unstable subtree
rooted at u.

We list the exact procedure for handling child messages
in Figure 8.

Example. We illustrate the operation of the clustering
protocol with the example shown in Figure 9.

o Initially, the overlay tree has a cluster A rooted at the
member v. Member v has no unstable subtree, and sends
|7y| = 0 to its parent u. Member u has an unstable subtree,
B, which is part of a cluster rooted upstream from u.

o At alater time (Panel 1), the cluster A reduces below size
k, making it unstable and is advertised by v as an unstable
subtree. As a consequence, at u, |r,| = 3k/4+ k/2 >
k. The procedure MERGESUBTREES is called on the two
subtrees A and B to create one single cluster. No unstable
cluster is created rooted at u. So 7, becomes empty.

o Next (as shown in Panel 2), a new member w joins the
overlay tree. The member discovery protocol locates it be-
tween u and v but there is no change in the clusters.

+ Eventually (see Panel 3), an entire subtree C of size k/2
joins w. This causes |7, | to increase beyond k and leads
to the creation of a single cluster including subtrees A and
C. The new 7, becomes empty, and the subtree B again
becomes a unstable subtree at u.

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 9

A, and B are stable clusters

u f Towards root
with sizes between k and 2k of overlay tree
C is unstable

3k/2

Fig. 6. Stable clusters and unstable subtrees.

Procedure : MERGESUBTREES(u, ST RootList, k)
TempClusters «— L1; ThisCluster «— L
for v € STRootList
ThisCluster «— ThisCluster U T(v)
if |ThisCluster| > k—1
Add {u} to ThisCluster
Add {ThisCluster} to TempClusters
ThisCluster «— L
if ThisCluster # L
Tu — ThisCluster
return TempClusters

Fig. 7. Procedure MERGESUBTREES.

[Tul=0

\

|Tu|=0

|Tw|=3ki4+1

|Ty| = 3k/4

Procedure: PROCESSCHILDMESSAGE(u, v, |Tv|new)
Cy — 1 Ay — |’T'u|new - |T'U|old
if v already belongs to some cluster C rooted at u
Update cluster size of C to be |C|+ A,
if |C|<kor|C|>2k { Cis disbanded }
Cu — {wlw € Children(u) A w € (C U 1)}
{ v was not part of any cluster rooted
at u before, but may have been part of T before }
{ Add 7v to the unstable subiree, T4 at u }
Update size of 7, to be |1u| + Ay

else

if |ru| >k
Cu — {wlw € Children(u) A w € 7u}
else
Merge T, with an existing cluster if possible
if Cy#1

New Clusters rooted at v — MERGESUBTREES(u, C'y, k)

Fig. 8. Procedure PROCESSCHILDMESSAGE. (', is a list of u’s
children s.t. the unstable subtrees rooted at these children need
to be merged to create new clusters at u. A, is the change in the
subtree size between the previous message from child v and this
message.

|Tu| =k/2 ”
Z

|TW| :01

S\

k/2
|Ty| = 3k/4

\ \

1. A shrinks to 3k/4.
A and B now part of

0. Initially Ais a
same stable cluster.

stable cluster rooted
atv. B is part of a
cluster rooted upstream

2. New member w joins
and is located by member
discovery protocol
between u and v.

All members are part of
the same stable cluster.

3. New subtree C appears

and is rooted at w. A and C

are part of one stable cluster
rooted at w. B is part of a
separate cluster rooted upstream
of u.

of u.

Fig. 9. Clustering protocol example

C. Implementing Secure Multicast over Clustering

We have implemented, in detailed simulations, our se-
cure multicast solution using the clustering protocol as de-
scribed in this section. Our solution proposes a framework
that is similar to the Tolus framework [15]. In particular,
the clusters in our scheme can be considered to be equiv-
alent to subgroups in Iolus, and the cluster leaders behave
like Group Security Agents (GSAs). There are, however,
two basic differences:

1. The GSAs (in Tolus) are special entities located in the
secure distribution tree, are chosen a-priori and the peering
relationships between GSAs on the same level of the hier-
archy are manually configured. In contrast, our proposed
clustering protocol dynamically creates these clusters and
their cluster leaders and adapts them with the changing
structure of the secure group. Also the cluster leaders in
our scheme are not specialized entities but are just regular

members of the secure group.
2. The subgroups in Iolus are created based on administra-
tive boundaries. This is one reason why these subgroups
can be best assigned statically. In contrast, the clusters
in our scheme are assigned based on topological proximity
between members on the distribution tree. Additionally,
we impose size bounds on the clusters. It is precisely these
size bounded topological clusters that allow us to provide
rigorous bounds on the overheads of our group re-keying
scheme. The dynamic clustering that adapts based on the
changing group membership is one of the main contribu-
tions of our work. Clearly, if similar size bounds and topo-
logical properties are imposed on the subgroups in Iolus,
it will be possible to provide similar guarantees within the
Tolus framework too.

A clustering-based implementation for group re-keying
such as incurs an added overhead that is not present in
other schemes. This is not a concern in lIolus since the sub-

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 10

groups are statically and manually configured. Further, in
our solution, certain members have to act as cluster lead-
ers, potentially leading to added trust and security issues.
We address these two concerns next.

Clustering Overheads. The main overhead of clustering
is the time it takes for clusters to stabilize, which is, in
turn depends on the heartbeat period for the member dis-
covery protocol. In Section VI-B.1, we show that clusters
stabilize relatively quickly, e.g. in less than 2 seconds for
even clusters of size between 20 and 39, for the topologies
we consider. The stabilization time can be reduced further
by using an adaptive heartbeat period algorithm that sends
control traffic more frequently while clusters are forming or
changing. Lastly, we note that our experiments show that
the cluster stabilization time is independent of group size
and depends primarily on the size and depth of clusters.

Trust. Our group re-keying protocol assumes a certain
amount of inter-member cooperation. However, this co-
operation does not make data communication in the group
any less secure. Non-members cannot access the data en-
crypted by the current group key, while all current mem-
bers of the group are able to correctly receive it. We ensure
the latter by allowing cluster members to validate that their
cluster leader does not distribute an incorrect or old layer
key during a layer re-key. This is done as follows. The key-
server signs the layer keys, when it distributes them. The
cluster leaders re-distribute these digitally signed layer keys
within their clusters. Cluster members can then verify the
authenticity of the layer keys they receive from their lead-
ers. The key server periodically multicasts the identity of
the most current layer key of a layer that i1t has distributed,
to all members of the layer. This allows all the members
to verify that they have the correct and latest layer key.

The cluster leaders in the group re-keying protocol need
to maintain cluster membership information. The cluster
leader of the highest layer cluster is aware of the identity
of O(klog N) other members. The leaders can, therefore,
potentially compromise this partial group membership in-
formation to non-authenticated entities. However, the pro-
tocol can be augmented so that the members use a virtual
identifier to identify themselves in the group. When a new
member joins a group, the ACS authenticates it and now
also issues a virtual identifier to the member along with
the signed credential (Step 2 of Authentication). The cre-
dential certifies that the holder of the belongs to the group
without divulging the actual identity of the member. The
signed credential cannot be used for replay attacks, because
the attacker cannot compute the pair-wise key, K, gener-
ated in Step 5, without knowing, «, the exponent chosen
randomly by the actual member.

The cluster leaders are therefore aware of only the virtual
identifier and not the actual identity of the group mem-
ber. The IP addresses of cluster members are, however,
visible to cluster leaders. Note that for any protocol, an
attacker can also obtain such IP-level information by pas-
sively monitoring IGMP traffic. However, our protocol is
somewhat more susceptible to such “address” leaks because

the cluster leaders can identify group members in any net-
work without having to resort to packet sniffing.
Ultimately, if 1t is necessary for an application to protect
such IP-level information, additional mechanisms, e.g. use
of a set of TP anonymizers [8], [18], [20], have to be used in
order to obfuscate the IP header information. However, use
of such anonymizers will incur additional overheads, such
as intra-cluster control traffic at the anonymizers. Group
members that do not require IP-level anonymity can still
achieve user-level anonymity using the virtual identifier
scheme without incurring any additional overheads.

V. EXPERIMENTAL METHODOLOGY

In Table I, we presented theoretical bounds compar-
ing various key distribution schemes for secure multicast.
In this section, we present simulation results to precisely
quantify and compare the actual overheads for the different
schemes.

A. Ezperimental Setup

We begin with a description of the topology we used to
conduct our experiments, and describe the implementation
of the various schemes.

A.0.a Network Topology and Multicast Support. We ex-
perimented the key distribution performance of the differ-
ent schemes on a large Internet map obtained by the SCAN
project*. This map, created using the Mercator [11] tool,
contains about 280, 000 IP routers discovered using traces
on the Internet. About 50% of all the routers in the map
were edge routers, to which we attached between 10,000
and 500, 000 hosts routers uniformly at random for differ-
ent experiments.

We have simulated network infrastructures that do and
do not support directed multicast. Directed multicast al-
lows a sender multicast a packet to individual subtree(s)
rooted at a specific router on the multicast delivery tree.
This i1s not currently a part of the IP multicast stan-
dard, but is extremely useful for many network services,
e.g. NAK suppression for reliable multicast. It has been
proposed in research, e.g. AIM [13], and is currently be-
ing considered by the IETF as part of the PGM [22],
and GRA [5] efforts. In our experiments, many re-keying
schemes show marked performance improvements when im-
plemented over a directed multicast capable network.

In the absence of directed multicast, the same effect
can the achieved by using a different multicast address
for each subset of nodes that have to be addressed. For
our scheme, which requires addressing clusters individu-
ally, and for some key graph schemes, using a different
address for each addressable subgroup is not viable since
the number of multicast addresses required would be on
the order of the number of receivers. Instead, we use TTL-
scoping to limit packets to a certain part of the multicast
tree. The network load for using such scoped multicast is
often significantly higher than pure directed multicast.

4See http://www.isi.edu/scan for details.

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 11

Scoped multicast using a single multicast address and
directed multicast are two extremes in multicast addressing
capabilities. It is possible to approximate the effects of
directed multicast by using multiple multicast addresses,
and using TTL-scoped multicast on each of these addresses.
In our experiments, we consider directed multicast, scoped
multicast with only one address, and scoped multicast with
a small, fixed number of addresses.

A.1 Implementing LKH and Boolean Minimization

We have implemented both the LKH and Boolean min-
imization schemes along with our own scheme. The key
graphs scheme described in [25] proposes three different
re-keying techniques: user-, key-, and group-oriented re-
keying. The bandwidth requirements of the user- and key-
oriented re-keying are of the same order; therefore, we
present results from key-oriented and group-oriented re-
keying only. When directed multicast is available, key-
oriented re-keying has the lowest overhead, while group-
oriented re-keying has lowest overhead when scoped multi-
cast has to be used. In our simulations, we use key oriented
re-keying for the directed multicast scenario and the group
oriented re-keying scheme for scoped multicast. For all im-
plementations of the key graphs scheme, we used 4-ary key
tree graphs, as was proved to be optimal in [25].

Along with the different re-keying strategies, we imple-
mented two variants of the key graph algorithm, which we
refer to in the results as LK H-sequential and L KH-spatial.
These two schemes differ in the way the unique member
identifier —which defines the position of a member in the
key tree— is assigned to each group member. For both
schemes, members join the multicast tree in a random se-
quence.

In the LK H-sequential scheme, members are assigned se-
quentially increasing identifiers in the order they join. In
the LK H-spatial scheme, members are not assigned identi-
fiers according to their join sequence. Instead, we assign
the identifiers in sequence via a post-order traversal of the
multicast topology of all the members. This identifier as-
signment of the L K H-spatial scheme ensures that members
that share keys are close to each other on the multicast tree.
However, in order to ensure nearness on the tree, identifiers
have to be reassigned as members join and leave the group:
this process accrues a cost linear in the number of group
members. In our performance comparison in Section VI,
we ignore this cost. It should also be noted that this post-
order traversal based identifier assignment in the LKH-
spatial scheme does not guarantee optimal network load for
group re-keying; unfortunately, we found that the problem
is NP-complete for all key trees with tree degree greater
than two. However, with this simple identifier assignment
heuristic, the performance of the L KH-spatial variant 1is
significantly better than LK H-sequential and any real im-
plementation of LKH on a large topology must address
the identifier assignment issue. Lastly, as noted before, for
bulk simultaneous to the key graph, we implemented the
improved batch update algorithm described in [14].

For the boolean minimization scheme we implemented

the key distribution scheme described in [7]. We used the
publicly available logic minimization tool, Espresso® to de-
termine the necessary boolean reductions. Since the key
distribution technique in the boolean minimization scheme
encrypts all the necessary keys to be updated and multi-
casts them in a single message, we report the network load
only for scoped multicast.

B. Ezperiment Description

For each experiment:

o We generated a random set of group members attached
to the leaf routers of the Mercator Internet map;

o Next we create the multicast delivery tree, using the CBT
protocol [3].

o For our scheme, we compute the member overlay tree
and member clusters using the the protocol described in
Section IV. The clusters sizes were bounded between 8
and 15.

¢« We implement the key distribution protocol for our
scheme, LKH, and the Boolean Minimization on the same
set of members

o Next we choose, uniformly at random, a set of members
to leave the multicast group simultaneously and record the
storage, processing, message, and byte cost overheads at
each member, router and link of the tree.

In Section VI, we will present results as we vary two pa-
rameters: the group size and the number of members that
simultaneously leave the group. For each parameter, we
repeated each experiment 100 times, each with a randomly
chosen set of departing receivers, and obtained 95% confi-
dence intervals. In all cases, our confidence intervals were
extremely tight and we do not report them in the results.

B.0.a Performance Metrics. In our results in the next

section, we report the following metrics:

o Key-normalized byte count: This is the network overhead
for re-keying at a single group member, router or link as-
suming unit (1 byte) key size. The actual byte overhead
can be obtained by simply scaling the key-normalized byte
count by the key size, and accounting for packet headers,
etc. This metric is a measure of the total bandwidth re-
quirements of a scheme.

o Packet load: This is a count of the number of packets
processed by the routers on the multicast tree. To compute
the packet load, we assume a key size of 512 bits, and the
maximum [P packet size of 576 bytes.

o Storage and Processing Overhead: These numbers refer
to the number of keys stored at each group member and
the number of cryptographic operations at each member.
These numbers are independent of the particulars of the
topology.

In our analytic results we derived exact bounds for stor-
age, processing and communication overheads at the group
members. This is accurately reflected in the simulations.
As stated in Section III-E, only the communication costs

5 Espresso is publicly available at http://www-

cad.eecs.berkeley.edu/Software /software html

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 12

for the routers depend on the exact physical network topol-
ogy. Through our simulations we observed that the com-
munication costs at routers for large realistic topologies
closely match the bounds derived under the assumption
that the physical cluster topologies of a layer are non-
overlapping. We also verify this through independent ob-
servations of the overlap between physical cluster topolo-
gies.

VI. SIMULATION RESULTS

We simulated the various key distribution schemes over
multiple topologies and different network configurations.
We first present the communication overheads incurred by
network routers.

A. Communication overheads at routers

We begin with the results for the case when the under-
lying network is capable of directed multicast.

A.1 Directed multicast

In Table IT we present the results for two different LKH
implementations and compare them to our scheme. (Recall
that since Boolean Minimization sends all messages to the
entire multicast group, its performance is equivalent under
directed and scoped multicast. We defer results for Boolean
Minimization till the next section when we consider scoped
multicast.) For each scheme, we have tabulated the aver-
age byte overhead at each router (assuming one byte keys)
when a single member leaves and when member leaves are
batch processed after 1% of the members leave the group.
We analyze the actual number of bytes and IP packets in
Section VI-A.4, and other batch sizes in Section VI-A.3.

It is clear from Table IT that for a single leave, both
the communication overheads at routers for I KH-spatial
and our algorithm are on par (and that they both have
lower costs than the LKH-sequential scheme). However,
as members leave simultaneously, or if number of mem-
ber departures are processed in batch (e.g. shown by the
1%-leave results), our clustering-based scheme significantly
outperforms both LKH implementations. Finally, we note
that our LK H-spatial variant of the LKH scheme outper-
forms the originally published scheme by a factor of 2.5—3.
(Obviously, this is without accounting for the member—
identifier assignment overhead of LKH-spatial scheme.)

A.2 Scoped multicast

In Table IIT we compare the key-normalized byte load for
different re-keying schemes using when TTL-scoped mul-
ticast is the only primitive available from the network.
Group-oriented re-keying for LKH is optimally suited for
scoped multicast, and the member assignment issue is not
relevant (both LK H-sequential and LK H-spatial have iden-
tical performance).

We repeated the scoped multicast experiments with dif-
ferent number of multicast addresses for the spatial cluster-
ing scheme. In Table ITI, Spatial-i indicates that ¢ different
multicast addresses have been used by the spatial clusters

for intra-cluster communication. We use a simple decen-
tralized address assignment scheme in which each cluster
picks one multicast address (among the 7 available) at ran-
dom, independent of each other. Given ¢ addresses, the
optimal assignment of addresses to clusters such that the
extra traffic 1s minimized is also NP-complete.

As is evident in Table III, for a single leave, Spatial-
1 (our scheme using only a single multicast address) has
higher communication overheads at routers than all other
schemes. This is because even with TTL-scoping traffic
local to a cluster “spills over” to a large part of the mul-
ticast tree, and hence, increases the potential overlap be-
tween the physical cluster topologies of different clusters
of a layer. As more addresses are used, the TTL-scoping
becomes more effective and the spill over effect is effec-
tively mitigated. For our scheme, the availability of di-
rected multicast represents the best possible scenario since
it effectively minimizes the overlap between the physical
cluster topologies of different clusters. We have included
the costs under directed multicast as a lower bound.

There are two conclusions we can draw from Table III:
o Using a small number of multicast groups, the communi-
cation overheads at routers in our scheme is on par or better
than existing schemes for single member departures.
¢ Our scheme incurs much lower communication overheads
on routers than all existing schemes for batched updates to
the group, upto 1 — 3 order of magnitude better when the
group membership changes is of order N (shown by the 1%
set of results in the table).
These conclusions lead to two questions:
¢ How many departures have to be processed in bulk be-
fore we significantly outperform existing approaches? It is
clearly not always feasible or desirable to wait till O(N)
members have left before the group is re-keyed.
¢ How many multicast addresses do we need to get decent
performance, especially for large group sizes?
We addresses these two questions, in turn, in the next two
sections.

A.3 Impact of batched updates and multiple multicast ad-
dresses

Batched updates are likely to be used in most realistic
scenarios, especially with large group sizes. In Figure 10
we present results from an experiment in which we var-
ied the number of members that simultaneously depart
the multicast group. For each re-keying scheme, the fig-
ure plots the key normalized byte overhead for the entire
group (added over all the tree routers) as different numbers
of members simultaneously leave a 24,000 member secure
multicast group. The effectiveness of the O(log N') bulk up-
date provided by our scheme is clear in the plot from the
shape of the Spatial-z curves in the plot. In comparison, all
existing schemes incur O(N) cost and perform worse than
even Spatial-1 when more than 128 members are processed
in bulk. Using 16 addresses is enough to ensure that our
scheme outperforms existing schemes for all batched up-
dates to the group and we are a factor of two better than
the previously best known scheme if we batch only 16 de-

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION

Scheme ‘

Single member leaves (varying group size)

13

1% of group leave (varying group size)

3000 6000 12000 24000 48000 96000 | 3000 6000 12000 24000 48000 96000
LKH-sequential 4.9 5.6 5.0 6.0 5.3 6.3 23.2 32.8 36.3 49.5 57.1 76.8
LKH-spatial 1.9 2.1 1.6 2.0 1.5 1.8 10.3 13.7 14.9 18.7 20.8 27.0
Spatial clustering | 1.6 1.6 1.7 1.7 1.7 1.8 3.2 3.3 3.4 3.4 3.5 3.6
TABLE II

COMPARISON OF KEY NORMALIZED BYTE COUNT PER ROUTER ON A DIRECTED MULTICAST-CAPABLE NETWORK.

Single member leaves (varying group size) 1% of group leave (varying group size)
Scheme 3000 6000 12000 24000 48000 96000 3000 6000 12000 24000 48000 96000
LKH 22.2 23.9 26.8 28.5 31.0 32.4 394.2 792.7 1578.2 3092.7 6222.7 12609.6
Bool. min. 11.0 12.3 13.5 14.2 15.0 16.2 53.5 94.8 169.9 302.6 567.3 1077.0
Spatial-1 162.5 125.7 121.1 117.5 130.0 117.7 | 296.4 221.4 190.8 191.2 198.1 208.1
Spatial-16 8.7 11.0 13.9 16.5 19.3 20.6 10.3 12.8 16.2 19.1 22.4 241
Spatial-24 6.3 8.1 10.5 12.1 14.4 15.3 8.2 10.3 12.5 14.7 17.1 18.5
Spatial-directed 1.6 1.6 1.7 1.7 1.7 1.8 3.2 3.3 3.4 3.4 3.5 3.6
TABLE III

COMPARISON OF NORMALIZED BYTE LOAD PER ROUTER FOR THE DIFFERENT SCHEMES USING SCOPED MULTICAST.

partures for a 24,000 member group. Lastly, we note that
the communication overheads at routers in our scheme im-
proves by an order of magnitude if directed multicast is
available.

Using multiple multicast addresses. It is clear from
Table IIT that the performance of our scheme can be im-
proved by using multiple multicast addresses. Unfortu-
nately, it is difficult to optimally use a given set of ad-
dresses, and was not apparent how many addresses should
ideally be used for a given group size. Fortunately, di-
rected multicast provides bounds the performance of the
scoped multicast implementations: the extra overhead
of the scoped multicast implementations is precisely the
“spill-over” traffic because of ineffective TTL-scoping.

In order to quantify the gains from using multiple ad-
dresses, we varied the number of addresses used and ran-
domly assigned clusters to available addresses. We then
noted, for each router in the multicast tree, the number
of clusters for which the router carries any traffic. In the
theoretically ideal case, for perfectly disjointed clusters, all
routers should carry traffic from only a single cluster. (In
comparison, in the very worst case, without TTL-scoping
and if only a single address is available, all routers carry
traffic from every cluster!). Our results are shown in Fig-
ure 11: for different number of multicast groups, we plot
the cumulative distribution of the routers for different num-
ber of clusters whose traffic pass through the routers. We
see that when a single multicast address is used, more than
70% of the routers carry traffic for at least 30 different
clusters. The best case is observed for directed multicast,
where 95% of the routers carry traffic for at most 2 clus-
ters. Even with only 32 addresses, the cluster overlap falls
significantly (80% of the routers carry traffic 10 or less clus-
ters). We conclude that for groups with tens of thousands
of members, few addresses (16 — 32) approximate most of
the benefits of directed multicast, and are sufficient to bet-
ter all existing schemes.

A .4 Packet Processing Overheads

We now quantify the costs for our scheme in terms of the
number of packets processed at the routers. In Table IV,
we present a comparison of both the byte and packet loads
of the various re-keying scheme. For this experiment, we
assumed the 576 bytes maximum IP packet sizes (536 bytes
payload, and 512 bit key sizes).

For a single member departure from a group of 24,000
initial members, the key server has to send 28 encrypted
keys (4-ary key tree of height 8) for the key graphs scheme,
which translates to a message of size about 1.8 Kbytes (4
TP fragments). Similar computations show that 2 TP frag-
ments are processed per router for the boolean minimiza-
tion scheme. In contrast, Spatial-1 requires more significant
processing at each router, because of the high spill-over
traffic. As expected, the number of packets is significantly
reduced by using a small number of multicast addresses.
Like in the key-normalized cost metric, our scheme outper-
forms existing approaches with respect to the packet and
byte count metrics. Depending on the level of batching and
the number of addresses used, the gains from spatial clus-
tering are quite dramatic, often using orders of magnitude
less packets than previously known results.

B. Communication, Processing and Storage at Group

Members

In this section, we quantify the costs of our scheme in
terms of the overheads at the group members. As de-
scribed in Section III-E, we have derived exact bounds for
these metrics that hold independent of any network topol-
ogy assumptions. The results in this section validate the
analysis.

In Table V, we show the key storage requirements and
the communication cost per member for a group of 24,000
members. In Table VI, we show the processing cost as
the the number of cryptographic operations at members
(including both symmetric and asymmetric operations) as
the group membership changes. Asymmetric key cryp-
tographic operations are computationally more expensive

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION

14

A single member leaves 1% of group leaves 10% of group leaves 25% of group leaves

Scheme KBytes Packets KBytes Packets KBytes Packets KBytes Packets
LKH 1.8 4 197.9 370 905.2 1689 1273.1 2376
Boolean minimization 1.0 2 12.2 37 100.2 187 184.3 344
Spatial-1 7.5 118 12.2 191 12.8 200 12.3 193
Spatial-16 1.0 17 1.2 19 1.5 23 1.5 23
Spatial-directed 0.1 2 0.2 4 0.5 8 0.5 8
TABLE 1V

COMPARISON FOR KEY-NORMALIZED BYTE AND PACKET LOADS PER ROUTER (GROUP SIZE: 24000 INITIAL MEMBERS).

Communication costs at members

‘ Number of Keys

Scheme Member Key server | Singleleave 1% leaves 10% leaves 25% leaves
LKH 9 32002 18.1 1970.9 8952.1 12671.0
Bool. min. 15 31 14.5 300.0 1427.3 2074.3
Spatial clustering 3 6 1.1 1.4 2.3 2.3
TABLE V

COMPARISON OF STORAGE AND KEY-NORMALIZED BYTE LOAD AT MEMBERS FOR THE DIFFERENT SCHEMES FOR A GROUP OF 24,000 INITIAL

MEMBERS

Processing at members
Single leave

Processing at key server

Scheme 1% leaves 10% leaves 25% leaves | Single leave 1% leaves 10% leaves 25% leaves
LKH 1.7 5.5 6.4 5.7 28.0 3095.3 14310.5 19892.7
Bool. min. 1.0 1.0 1.0 1.0 15.0 302.9 1583.5 2680.2
Spatial clustering 1.2 1.5 2.4 2.4 1.3 3.5 4.0 4.0
TABLE VI

COMPARISON OF PROCESSING COSTS AT GROUP MEMBERS FOR THE DIFFERENT SCHEMES FOR A GROUP OF 24,000 INITIAL MEMBERS

than symmetric key cryptographic operations and are re-
quired for mutual authentication and pair-wise key estab-
lishment between a cluster-leader and a new cluster mem-
ber. Our analysis shows that the number of asymmetric
key operations required are insignificantly small and we
validated this in our experiments. In a group of 24,000
initial members for a single membership change, the aver-
age number of asymmetric key cryptographic operations at
a member was 0.0004. For batched updates, the number
of such operations per member was 0.004, 0.02 and 0.07
for 16, 64 and 256 simultaneous changes to the group re-
spectively. In contrast the total number of symmetric key
operations required varied between 1.2 and 1.4 as the num-
ber of simultaneous changes in the group varied from 1 to
256. While the number of keys at each member is low for all
the schemes, the number of keys stored at the server is sig-
nificantly lower for both boolean minimization and spatial
clustering scheme. Our scheme leads to lower processing
at the key server for single leaves. For batch updates, the
processing at the key server and the communication costs
is bounded by O(log N) for our scheme, which is a substan-
tial improvement over the O(N) costs for both LKH and
Boolean Minimization schemes.

B.1 Experiments with the Clustering Protocol

We have also implemented a packet-level simulator of
the spatial clustering scheme on the ns (version 2) simula-
tor to study the time dependent overheads of the protocol.
We present only a synopsis of our main results, because

of space constraints. Due to high processing and memory
demands of ns, we were limited to simulations on topolo-
gies of upto 1000 routers. In Table VII, we present results
from an experiment where a set of 250 members joined a
single multicast group, all between simulation time 0 and
1 second. The member discovery and clustering protocols
arrange the members into size bounded clusters; in all our
experiments, the size bounds were met by all the clusters.
The time required (in seconds) for clustering is shown in
the last column of Table VII. For these experiments, we
used four heartbeats per second which resulted in about 40
bytes of traffic per second, scoped within the cluster. We
used only periodic heartbeats, and not the adaptive tech-
nique described in Section IV-C, which can further reduce
the stabilization time.

Even though we only simulated on topologies on the
order of 1000 nodes, we are confident that the stabiliza-
tion times we present are representative of large topologies.
This is because, in our experiments, we observed that in the
vast majority of cases, independent of group size, a single
join or leave to the group affects less than two clusters. As
multiple simultaneous changes occur, the clustering occurs
in parallel over the entire topology; the total time taken
for stabilization depends primarily on the cluster size and
depth, and not on the size of the group.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have presented a new algorithm for ef-
ficiently implementing secure group communications over

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 15

Cluster Total Num. Avg. Cl. Avg (Max)
size bound of Clusters Size Stab. Time (s)
a-7 45 5.6 1.45 (2.63)
10-19 17 14.7 1.85 (3.87)
20 -39 9 27.8 2.22 (4.60)
TABLE VII

CLUSTER CHARACTERISTICS

Initial group size 24000

—a—"LKH ‘

----&--- Boolean minimization

10k - ---@-- Spatial-16 1
= &3 Spatial-4
g ------ Spatial-1
o o
> .
2
1 1
(5]
N
©
£
5 | mme
I 100
]
x
i
1 - P
@ ° ° @ o
10 L
1 4 16 64 256 1024 3k 6k 12k

Number of hosts leaving the group simultaneously

Fig. 10. Varying the number of simultaneously leaving mem-
bers (Scoped multicast)

Group size 24000, ~ 3100 clusters and ~ 17000 routers

Directed‘ m/c (Ideal) ‘
r _o ©--0

1 oo - g
o ._-/"""' x ; e s o] irigvg”g_g_;ﬁgi
) oy g B B .
= 256 m/cgps o o xX I -
08 / . 64 mip,;gﬁé e * |

x e
-~ 32 mic gps—*
| < "s2micgp
06 o X 4
* X
X
< 16 m/c gps

4 m/c gps

.
.
P

s
S

Cumulative Fraction of Routers

".S/ingle m/c gp

20 25 30
Number of clusters whose traffic passes through a router

Fig. 11. Cumulative distribution of the routers that handle
cluster traffic for different number of clusters

IP multicast. For all metrics, our scheme provides the best
analytic bound, frequently improving on previously known
results. For single group changes, our improvements re-
duce previously known logarithmic bounds to constants,
are probably only of theoretical interest. However, for bulk
simultaneous group changes, our theoretical results for net-
work load and processing cost at the key server are signifi-
cant, since they reduce previously known linear bounds to
logarithmic bounds.

Unlike existing approaches, our re-keying algorithm was
designed to utilize the parallelism inherent in the multi-
cast tree topology. Therefore, we expect our algorithms to
perform extremely efficiently in practice. As shown by our
extensive simulations on a large realistic topology, for large
groups, the number of messages and encryptions required

250 initial group members

No. of Simultaneous Changes

1 4 16 64 224

Join 1.0 18 24 36 4.3
Leave 0.5 1.6 3.3 4.0 5.1

TABLE VIII
CLUSTER STABILIZATION TIME (IN SECONDS)

by our scheme is often orders of magnitude lower than ex-
isting approaches, especially when we consider simultane-
ous changes to the group. Our experiments also show that
directed multicast is an useful primitive for implementing
many secure multicast schemes, including ours.

REFERENCES

[1] D. Balenson, D. McGrew, and A. Sherman. Key management
for large dynamic groups: One-way function trees and amortized
initialization. draft-balenson-groupkeymgmt-oft-00.txt, IETF,
February 1999.

[2] A. Ballardie. Scalable Multicast Key Distribution.
Working Group, RFC 1949., May 1996.

[3] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based
trees (CBT). Proceedings of SIGCOMM, September 1993.

[4] B. Briscoe. MARKS : Zero side effect multicast key manage-
ment using arbitrarily revealed key sequences. In 1st Interna-
tional Workshop on Networked Group Communication, Pisa,
Ttaly, November 1999., Pisa, Italy, November 1999.

[5] B. Cain, T. Speakman, and D. Towsley. Generic Router As-
sist (GRA) building block motivation and architecture. Internet
Draft, Internet Engineering Task Force, March 2000. Work in
progress.

[6] Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni
Naor, and Benny Pinkas. Multicast security: A taxonomy and
efficient constructions. In Proceedings of INFOCOM, New York,
March 1999.

[7] 1. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha.
Key management for secure internet multicast using boolean
function minimization techniques. In Proceddings of Infocom,
New York, March 1999.

[8] M.G. Reed D.M. Goldschlag and P.F. Syverson. Onion routing
for anonymous and private internet connections. Communica-
tions of the ACM, 42(2), February 1999.

[9] E. Harder D.M. Wallner and R.C. Agee. Key management for

multicast: Issues and architectures. RFC 2627, IETF, June 1999.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering,

M. Handley, V. Jacobson, C. Liu, and P. Sharma. Protocol

Independent Multicast-Sparse Mode (PIM-SM): Protocol Spec-

ification. RFC 2362, 1998.

R. Govindan and H. Tangmunarunkit. Heuristics for Internet

Map Discovery. In Proceedings of Infocom, March 2000.

H. Harney and C. Muckenhirn. Group Key Management Proto-

col (GKMP) Architecture. Request for Comments (Experimen-

tal) 2094, Internet Engineering Task Force, July 1997.

B.N. Levine and J.J. Garcia-Luna-Aceves. Improving Internet

Multicast with Routing Labels. In Proc. IEEE International

Conference on Network Protocols, pages 241-50, October 1997.

X. Li, R. Yang, M. Gouda, and S. Lam. Batch updates for key

trees. Technical report, University of Texas, Austin, September

2000.

S. Mittra. Tolus: A framework for scalable secure multicasting.

Proceedings of SIGCOMM, October 1997.

M. Naor, D. Naor, and L. Lotspiech. Revocation and tracing

schemes for stateless receivers. In Proceedings of Crypto 2001,

2001.

A. Reddy, R. Govindan, and D. Estrin. Fault isolation in multi-

cast trees. Proceedings of SIGCOMM, August 2000.

M.K. Reiter and A.D. Rubin. Crowds: Anonymity for web trans-

actions. ACM Transactions on Information and System Secu-

rity, 1(1), April 1998.

Bruce Schneier. Applied Cryptography. John Wiley and Sons,

1996.

Network

10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 16

[20] C. Shields and B.N. Levine. A protocol for anonymous communi-
cation over the internet. Proceedings of the 7th ACM Conference
on Computer and Communications Security, November 2000.
J. Snoeyink, S. Suri, and G. Varghese. A lower bound for mul-
ticast key distribution. IEEE Infocom, April 2001.

T. Speakman et al. PGM reliable transport protocol. Internet
Draft, Internet Engineering Task Force, April 2000. Work in
progress.

D. Waitzman, C. Partridge, and S. Deering. Distance vector
multicast routing protocol. RFC 1075, 1998.

M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner.
The Versakey Framework: Versatile Group Key Management.
IEEE Journal on Selected Areas in Communications, Special
Issue on Middleware, 17(9), August 1999.

C.K. Wong, M. Gouda, and S. Lam. Secure group communica-
tions using key graphs. Proceedings of SIGCOMM, September
1998.

(21]

(22]

(23]

(24]

(25]

APPENDIX
I. KEy DISTRIBUTION PROTOCOL

We assume a clustering protocol exists that creates and
maintains clusters, as specified in Section III. The clusters
do not share any members and have size between k& and
2k — 1, for some fixed k. A hierarchy of members is created
as shown in Figure 3 as follows:

All members are part of the lowest layer, Ly. FEach layer,
L;, runs an instance of the clustering protocol to create a
set of clusters, the leaders of which join the next higher
layer, Lit1.

Each layer has a secret layer key known to only the mem-
bers of the layer. Similarly, each cluster in each layer has a
secret cluster key, known to only all the cluster members.

A. Notation

¢ Members and Member Sets

— Cluster(u, j): Cluster of layer L;, to which member u
belongs.

— Ldr(u,j) : Leader of the cluster in layer L; to which
member u belongs.

— S : The key server for all layer keys.

— AC'S: The authentication and access control server.
¢ Keys and Messages

— xg(t): The secret key of G at time ¢, where where G is
a set of members. If (G is a cluster, then this is the cluster
key, if G is a layer, then this is the layer key. If G is a pair
of members, then this is a key shared only by these two
members.

— {m}.: Message m is encrypted by the key e.

— (Unicast :: v — v : z): u sends a unicast message x
to v.

— (Multicast :: v — G : z): u multicasts message z to
set of members GG, where G is either a cluster or a layer.

B. Dustributed Re-keying Operation

When a member u joins or leaves layer L;, the following
operations are performed distributedly by the key distribu-
tion protocol:

1. Cluster re-key: Ldr(u,j) generates a new cluster key
XCluster(u,j)(t + 1) and unicasts it to each current member
of the cluster Cluster(u,j) encrypted separately by the

pair-wise key of the leader with each member.

Vv € Cluster(u, j)
(Unicast :: Ldr(u,j) — v:
{XC’luster(u,j)(t + 1)}

) (1)

Obviously, in case u is leaving this cluster, this message is
not sent to u. The total communication overhead of this
cluster re-key is O(k) at the cluster leader and O(1) at
each other member (due to O(k) pair-wise communication
between the cluster-leader and the cluster members).

2. Layer re-key: The key server,S, generates a new layer
key for layer L;, and multicasts it to all members of layer
Lj 41— these are the cluster-leaders of the clusters of layer
L;. Each cluster leader of layer L; then performs a cluster
multicast to all the members of its cluster in layer L;. The
multicast messages are encrypted by the appropriate keys.

(Multicast :: S — Lj4q :

X{Ldr(u,5),v}

{xz;(t+ Dixc,sa (1) (2)
Yv € Lj_|_1
(Multicast :: v — Cluster(v,j) :

{XLj(t + 1)}Xcluster(v,j)(t+1)> (3)

Each member in L; 4, receives a single copy of the layer
multicast message from S to layer L;11. Since the clusters
of any layer are disjoint, each member in L; receives only a
single cluster multicast message sent by the leaders of the
clusters in layer L;. Thus, the combined communication
cost of these multicasts is O(1) per member.

The total communication cost for distributed re-key oper-
ation in each layer is, therefore, O(k) per link.

C. Re-keying algorithm for member joins and leaves

1. Join: When a new member, u, joins the secure multicast
group, it is first authenticated by the ACS. Subsequently
when u joins a cluster, it needs to establish a pair-wise
key with its leader. We describe this interaction using a
variant of the pure Diffie-Hellman protocol as described
in [19]. The pair-wise key can also be established by using a
similar variant of other key exchange protocols, e.g. Elliptic
Curve Cryptography. We assume that a prime number, p,
a generator, g and the public key of the ACS are publicly
known across the system. We use modulo p arithmetic in
this description. For simplicity of notation we use g% to
represent ¢%(mod p).

All interactions in this sequence are unicast.

(a) Interaction of u with ACS.

u—ACS : {u,g%) (4)
ACS — u {u, 9%, Cred, } (5)
where, « is the random exponent chosen by u, and Cred, =

{u. 9} Acs-

(b) Interaction of u with v, the leader of the cluster to
which u joins. Let # be the random exponent chosen by v
when it had joined the secure group.

u—wv:{g® Credy,} (6)
v —u:{g? Cred,} (7

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 17

u and v then can compute a shared key K = (9%)* = (¢°)°
independently.

The Distributed Re-keying Operation is also invoked, i.e.
v performs a cluster re-key in its cluster and the key server
performs a layer re-key for layer Lg.

2. Leave: When a member, u, leaves a secure group, it
leaves from all the layers to which it was joined. This
departure may be voluntary or can be due to an explicit
removal of u from the group by the ACS. If u was part
of layers Lg ... L; and no other layer, first a new leader is
set up in the single cluster in layer L;,;¢ € [0,5 — 1] of
which u was the leader. This requires mutual authentica-
tion and pair-wise key establishment as described in Steps 6
and 7 above. Finally, the Distributed Re-key Operation is
invoked for each of the layers to which u was previously
joined. For the layer re-key operation of a layer L;41, the
new layer key is first distributed to members of layer L;.
The key server tags this re-key message with the identity of
the member, u, whose group membership is being revoked.
In both cases, the clustering protocol also appropriately
re-clusters the affected layers, if needed.

D. Analysis

We analyze three different metrics — key storage re-
quirements at each member, the processing costs due to
encryptions and decryptions at each member and the com-
munication overheads per link of the multicast delivery tree
for each re-key. In our analysis we present the processing
and communication costs for member departures only. The
overheads incurred for group re-keying due to member de-
partures are higher than the overheads for group re-keying
for new members joining the group and therefore serve to
upper-bound for the costs of member join operations.

Assume that there are N members currently joined to
the secure multicast group. Let Ly be the highest layer in
the hierarchy (it contains a single member). The following
properties hold :

o R <log, N. For all jin [0, R], layer L; has not more
than N/(k’) members.

o If a member u, is present in L;, it is present in all lower
layers Lo ... L;j_1. If a member u is not present in layer L;,
it is not present in any of the higher layers, L; 1 ... Lpg.

Communication Cost at a member. Most members
(i.e. at least N(1— %) of them) are joined only to the lowest
layer, Lg. Hence, a majority of member joins and leaves
affect only layer Lo and the communication cost incurred
for the necessary re-keying is O(k), a constant (as shown
before). In the worst case, the single member at the highest
layer Lg leaves, all the layer keys would need to be changed.
Each layer key change requires O(k) communication cost
per link, which makes the worst case communication cost
of O(klog;, N) for leaves (and analogously for joins).
Under the assumption that each member of the group
is equally likely to leave (and join), we now show that the
amortized cost for joins and leaves is constant. We con-
sider the case of a member leaving the group. Consider
the case when a member u, joined only to layers L; ... Lo,
leaves the secure multicast group. Each of these j+ 1 layer

keys need to be changed. The maximum communication
cost per member for each layer key change is O(k). Addi-
tionally, in each layer, it can be shown that at most two
clusters would need to be re-clustered (if size of the af-
fected cluster falls below the size lower bound, k). Due to
the clustering protocol, this would involve communication
cost of at most O(k) per member. Hence, the total commu-
nication cost per member due to re-keying of all the layers,
for member u leaving the group is O(k(j + ¢)), where ¢ is
some constant. For any layer, the number of members in
layer L; is bounded by N/kJ. Thus, the amortized cost of
for a member leaving the multicast group is given by :

log N

[o5]

™
==

IA

“k(i + o)
o]

1 & 1
ﬁZlelk(Hc) ¥
j=0

ol
I

]{72 logkN
ot e T

= ¢

However, k and ¢ are constants and lﬂgNﬁ — 0 asymptot-
ically with increasing N. Hence, the amortized cost of a
member leaving (and also for joining) is constant.

Communication Cost at a router (link). The commu-
nication cost at routers (links) depend on the underlying
physical topology of the multicast tree. It is easy to see
that if the physical cluster topologies of the clusters of a
layer are non-overlapping, then using the same argument as
above, the amortized cost at any router (link) of a member
leaving (or joining) the group is constant. In Section VI
we have studied the topological properties for clusters on a
real Internet map. Our study concluded that the physical
cluster topologies have very low overlap.

Storage. Let us assume that the clusters are of size k
each ®. The total number of keys at a member that belongs
to layer L; and no layer above that, are as follows : j +1
layer keys, 1 pair-wise key with the leader of its cluster in
layer L;, and k — 1 pair-wise keys with the other members
in each of the clusters in layers Lo, ..., L;_1, leading to a
total of jk + 2 keys. Then number of such members in L;

s 51 D).

Helnce]\,r the average number of keys per member is:
~ Z]’O:go F=5)kji+2) = 2+ k%""o(l&gj\rﬁ) Asymp-
totically, the average number of keys at a member 1s, there-
fore, 2 + % < 4.

Processing cost at a member. We first consider the
processing cost at members due to symmetric key opera-
tions. When a member, that belongs to only L leaves, the
number of symmetric key-based decryptions can be broken
down as follows: 1 at each of the £ — 1 members in the
affected cluster of Lo (Step 1, cluster re-key in Distributed
Re-keying Operation), 1 at each N/k member in layer L,
(Step 2, layer re-key) and 1 at each of N(k — 1)/k mem-
bers that occurs in layer Lo only (Step 3, layer re-key).
Therefore, the average cost per member is %

6 Although cluster sizes can vary between k and 2k — 1, this assump-
tion does not change the order of the results.

JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 18

Similarly, when a member that belongs to layers L; ... Lg
leaves, the total number of symmetric key-based decryp-
tions can be broken down as the cluster and layer re-key
cost for each layer L;,i € [0, 7] as follows: k& — 1 decryp-
tions for a cluster in layer L; (Step 1, cluster re-key), k—{%
decryptions of the layer L; key by members in layer L; 41
(Step 2, layer re-key) and (1 — %)% decryptions for sub-
sequent retrieval by layer L; members of the same layer
key (Step 3, layer re-key). Therefore, the cluster and
layer re-key cost for re-key of layer L; is (k — 1) + %
Then, the average symmetric key-based decryption cost
per member for a departure from layer L; is obtained as:
¢":LE (k—1)+ — (k= 1)(J+1)+Z L Ag-

J N =0 i=0 %k7- g
gregating over departures of members from any arbitrary
layer, the amortized decryptiou cost per member is:
LB N N (1 1)g; = 20 4 O(18Y), which is < 2 for
asymptotically increasing N

The number of symmetric key-based encryptions for a

departure of a member that belongs to layers L; ... Ly can
be computed in a similar manner. The cluster and layer
re-key cost for each layer L;;i € [0,j] is: k — 1 for a
cluster in layer L; (Step 1, cluster re-key) and l+1 en-

cryptions of the layer L; key by members in layer Lita
(Step 2, layer re-key). Then, the average symmetric key-
based encryption cost per member for a departure from
layer L; is obtained as: ®; = %Zgzo(k -1+ k—%
Aggregating over departures of members from any arbi-
trary layer, the amortized encryption cost per member is
%Z;OgON N(l - 2)®; = —t T + O8N which is < 1 for
asymptotically increasing N and £ > 1.

We now consider the processing cost due to asymmetric
key operations at the members. These operations are due
to mutual authentication and establishment of the pair-
wise keys between a (new) cluster leader and the cluster
members. In the most typical case (i.e. a member that
belongs to layer Lo leaves the group) no asymmetric key
operations are required, since there are no new authenti-
cation and pair-wise key establishment required with the
remaining members of the affected cluster. When a mem-
ber that belongs to layers L; ... Lg leaves, the total number
of asymmetric key operations at layer L;,i € [0,j — 1] is
bounded by 4(k — 1) (Steps 6 and 7 of Authentication).
These are the pair-wise interactions between a new leader
and the members of the corresponding cluster in each of
these layers. The total cost for a departure from layer
L; is bounded by 4(k — 1)j. Hence, the average num-
ber of asymmetric key-based operations at a member for
such a departure is w. Therefore, the amortized
number of asymmetric key operations at the members is

logN N
N Z] =0 kJ(
ing N.

T 1) W << 1 for asymptotically increas-

Processing cost at key server. The key server encrypts
new layer keys prior to layer multicast. The amortized
number of encryptious for a single departure is:

logN N . 1 log N
szogo k]()(J+1):1+m+0(0
asymptotically bouuded by 2.

), which is

Bulk simultaneous departures. For a group of size N,
assume zN of the groups leave, where 0 < z < 1. From
layer L;, the number of leaving members is x%(l— %) The
total number of cluster key decryptions for the members in
layer L; (Step 1, cluster re-key) is upper-bounded by the
total number of members in the layer, which is IJCV—](l - %)
The total number of layer key decryptions of layer L; in-
cludes one decryption for each of the kﬁl members of layer

]+1 (Step 2, layer re-key) and one decryption for each of
the k—]—.(l — E) members that occur in layer L; and no other
higher layer (Step 3, layer re- key) Therefore the decryp-
tion overheads due to layer L; is < & £5(2— —) Aggregat-
ing over all layers, the decryption cost per member due to
the la?/er and cluster key updates at thrs layer is bounded

gON L2 - —) = 2’“ 1 + O(), which is asymp-
totrcally O(l) Similar aualysrs ylelds similar bounds for
symmetric key encryptions and asymmetric key operations
at members.

The processing cost at the key server is log N (the max-
imum number of layers). Similarly, the communication
overhead at each member (and also for routers and links
under the assumption that physical cluster topologies are

non-overlapping) is O(log N).

Suman Banerjeeis a Ph. D. candidate at the
Department of Computer Science of University
of Maryland at College Park, USA. He received
the B.Tech. degree in Computer Science and
Engineering from the Indian Institute of Tech-
nology, Kanpur, India in 1996 and the M.S. de-
gree in Computer Science from the University
of Maryland at College Park, USA in 1999. His
research interests are in protocols and services
for networking and distributed systems.

Bobby Bhattacharjee received his Ph. D.
in Computer Science from Georgia Tech. in
1999. Since 1999, he has been an assistant pro-
fessor in the Computer Science department at
the University of Maryland, College Park. His
research interests are in network protocols, net-
work security, and distributed systems. He is

a member of the ACM.

